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Monte Carlo renormalization-group analysis of the lattice f4 model in DÄ3,4

M. Itakura
Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute,

Meguro-ku, Nakameguro 2-2-54, Tokyo 153, Japan
~Received 28 June 1999; revised manuscript received 22 November 1999!

We present a simple, sophisticated method to capture renormalization-group flow in Monte Carlo simula-
tion, which provides important information of critical phenomena. We applied the method to theD53,4 lattice
f4 model and obtained a renormalization flow diagram that well reproduces theoretically predicted behavior of
the continuumf4 model. We also show that the method can be easily applied to much more complicated
models, such as frustrated spin models.

PACS number~s!: 02.70.Lq, 75.10.Hk
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I. INTRODUCTION

Renormalization-group~RG! theory @1–4# has drastically
improved our perspective about phase transition. When
combined with Monte Carlo~MC! simulations, it becomes a
very powerful tool to investigate critical phenomena. Ho
ever, the so-called Monte Carlo renormalization gro
~MCRG! method @5–9# requires an elaborate scheme a
experience, and application has been restricted to sim
models such as the Ising ferromagnet up to now. In t
paper we reformulate the MCRG method and presen
simple way to obtain the RG flow diagram in a MC simul
tion, which can provide essential information about critic
phenomena. This paper is organized as follows. In Sec
problems in the conventional MCRG scheme are explai
and remedies for each problem are presented. In fact, m
fication of the conventional scheme leads to use of Bind
parameter@10# and the second parameter, which is used
recent high-precision numerical analyses@15,14#. In Sec. III,
expected behavior of RG flow in theD54 latticef4 model
is presented for comparison with the MC result. Some c
tion on MC simulation just at the upper critical dimension
also presented. In Sec. IV, details of the MC simulation
the latticef4 model are described. In Secs. V and VI, resu
of the MC simulation forD53,4 are presented. In Sec. VI
we summarize the result and discuss possible application
the method to more complicated models.

II. MODIFICATION OF THE CONVENTIONAL MCRG
METHOD

In the conventional MCRG scheme@5–8#, critical expo-
nents are calculated from eigenvalues of the linearized
transformation:

]Ki~L,b1!

]K j~L,b2!
, ~1!

whereKi(L,b) denotes coupling strength of thei th term of a
block-spin Hamiltonian with block sizeb, andL denotes the
original size of the system.

One problem is that one should use the proper defini
of block spin, otherwiseKi(L,b) goes to zero or infinity asb
becomes large even at the critical point. For the Ising mo
PRE 611063-651X/2000/61~5!/5924~6!/$15.00
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the majority rule is one of the options. However, it cannot
extended to more complicated models. There are infin
kinds of definitions and location of the fixed point~along an
irrelevant direction! depends on it@6#.

In this paper, we use one that seems most simple
suitable for Monte Carlo simulation,

sb̄[sb /A^sb
2&, ~2!

wheresb denotes summation of all spins in the block. Th
definition is implicitly used in the definition of Binder’s pa
rameter. Actually, we use coarse-grained spin obtained
cutting high-momentum modes off, as in Ref.@9#. However,
we setb5L at the last stage, therefore real-space RG a
momentum-space RG do not make much difference.

Another problem is that the block sizeb should be much
smaller thanL, otherwise the behavior of the block spin
affected by a boundary condition that is nonuniversal. Th
one faces a tradeoff that for largerb, behavior of block spins
become more asymptotic~couplings of irrelevant terms be
come smaller! but their behavior deviates from bulk one. Th
solution is to use the following matrix:

]Ki~bL,bL!

]K j~L,L !
5

]Ki~bL,bL!

]K j~bL,b!

]Ki~bL,b!

]K j~bL,1!

@]Ki~L,L !

@]K j~L,1!#21
,

~3!

instead of~1!. At the critical point,

]Ki~bL,bL!

]K j~bL,b!
5

]Ki~L,L !

]K j~L,1!
~4!

should be satisfied and eigenvalues of the matrix~3! coincide
with that of ~1!. Thus one can use as large a block size as
system size.

Yet another, and most severe problem, is referred to as
‘‘redundancy problem’’@7,8#. In the conventional MCRG
scheme, one should observe very large numbers of blo
spin interaction terms to construct a fixed-point Hamiltonia
However, in the continuumf4 theory, there are only two
kinds of independent coupling constants~mass and cou-
pling!. The lattice Hamiltonian approaches this continuu
5924 ©2000 The American Physical Society
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asymptotically after the momentum-space RG transform
tion, and the two terms are enough to observe essential
flow.

Let us consider the Hamiltonian defined o
D-dimensional continuum space:

H5E dxFg2 @¹f~x!#21
a

2
f~x!21bf~x!4G . ~5!

Note that it is not a microscopic Hamiltonian: it is a pheno
enological Hamiltonian and the parametersg,a,b should be
determined to reproduce experimental results. In ot
words, it is the logarithm of probability of observing a sp
cific configuration of some physical quantityf(x) in the
experiment. This means that short length scale fluctuat
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beneath the resolutionl of the observation device are alread
integrated out and absorbed into the parametersg,a,b. Thus
parameters depend on the cutoff lengthl and should be de-
noted byg l ,a l ,b l . We also denote the physical quanti
f(x) averaged over a volume of linear lengthl by f l(x).

We replace the parameters in~5! by ‘‘regularized’’ ones
defined as follows:

ā l5 l D^f l~x!2&a l , b̄ l5 l D^f l~x!2&2b l ,

ḡ l5 l D22^f l~x!2&g l .

In terms of this regularization, the Hamiltonian is express
as
E
upu<p

dp
ā1ḡp2

2
f̄~p!f̄~2p!1b̄E

upi u,p
dp1dp2dp3dp4dS (

i
pi D f̄~p1!f̄~p2!f̄~p3!f̄~p4!, ~6!
where f̄(p)[f(pl )^f l
2&21/2. All possible values of the

regularized parameter fall on a two-dimensional manifold
which ^f̄ l(x)2&51 is satisfied. This regularization is suitab
for MC simulations, compared to the field theoretical on
g[1. Figure 1 and Fig. 2 show schematic RG flow of the
regularized parameters inD53 and 4, respectively: high
temperature, low temperature, Gaussian, and Wilson-Fi
fixed point are denoted byH, L, G, and WF, respectively.

Now let us return to the lattice model defined as follow

HL5
g

2 (̂
i j &

~si2sj !
21(

i

a

2
si

21bsi
4 , ~7!

where the summation(^ i j & sums over all nearest neighbo
pairs. If we apply the momentum-space RG transform
factor b to ~7!, the renormalized Hamiltonian takes the fo
lowing form:

FIG. 1. Renormalization flow of regularized parameter inD
53.
n

,
e

er

:

f

H~L,b!5
ā~L,b!

2
~L/b!2D (

upu<p

(L/b)

sb̄~p!sb̄~2p! ~8!

1
ḡ~L,b!

2
~L/b!2D (

upu<p

(L/b)

p2sb̄~p!sb̄~2p!

~9!

1b̄~L,b!~L/b!23D (
upi u<p

p11p21p31p450

(L/b)

3sb̄~p1!sb̄~p2!sb̄~p3!sb̄~p4!, ~10!

where s̄b(p)5s(bp)^sb
2(x)&21/2 and the symbol(p

(N) de-
notes summation over 0,62p/N,64p/N, . . . , for each
component ofp, s(p) denotes Fourier components ofsi , and

FIG. 2. Renormalization flow of regularized parameter inD
54.
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5926 PRE 61M. ITAKURA
sb~x!5~L/b!2D (
upu<p/b

eip•xs~p! ~11!

is coarse-grained spin atx. Actually, higher terms such a
O(sb̄

6) are present inH(L,b) but they vanish asL and b
become large.

Note that ^(psb̄(p)sb̄(2p)&5const by definition and
there are only two kinds of interesting terms. If we setb
5L, the term~10! is exactly the Binder’s parameter and w
denote it byBL . The term~9! vanishes if we setb5L, so we
must stop RG transform atb5L/2. Then it becomes

2p2^s~k1!s~2k1!&

22D^s~0!212s~k1!s~2k1!&
, ~12!

wherek1[(2p/L,0, . . . ,0). Forsimplicity, we use the fol-
lowing quantity:

CL[
^s~k1!s~2k1!&

^s2~0!&
. ~13!

Recently, several different parameters have been propos
the second parameterCL to estimate and eliminate the su
leading scaling field. We will review these works in Se
II A.

Now consider the following matrix:

]~BbL ,CbL!

]~BL ,CL!
5

]~BbL ,CbL!

]~b̄1 ,ḡ1!
S ]~BL ,CL!

]~b̄1 ,ḡ1!
D 21

~14!

5
]~BbL ,CbL!

]~b̄b ,ḡb!

]~b̄b ,ḡb!

]~b̄1 ,ḡ1!

3S ]~BL ,CL!

]~b̄1 ,ḡ1!
D 21

~15!

instead of

]@b̄~bL,bL!,ḡ~bL,bL/2!#

]@b̄~L,L !,ḡ~L,L/2!#
. ~16!

At the fixed point,

]~BL ,CL!

]~b̄1 ,ḡ1!
5

]~BbL ,CbL!

]~b̄b ,ḡb!
~17!

is satisfied and eigenvalues of](BbL ,CbL)/](BL ,CL) coin-
cide with that of ](b̄b ,ḡb)/](b̄1 ,ḡ1) as long as
](BL ,CL)/](b̄1 ,ḡ1) is a nonsingular matrix.

Thus scaling behavior of renormalized parameters can
extracted from that of (BL ,CL), as long as
u](BL ,CL)/](b̄1 ,ḡ1)uÞ0: If we draw arrows from(BL ,CL)
to (BbL ,CbL) in the BL-CL plane, the renormalization flow
diagram of factorb is obtained. From this diagram, one ca
determine whether the MC result is asymptotic enough
not, by checking whether (BL ,CL) converge to a fixed point
When a subleading scaling field is expected to be very la
such as in the recent Monte Carlo studies of a fi
as

.

e

r

e,
-

dimensional~5D! Ising model @11–13#, this RG flow dia-
gram is very useful compared to a many parameter fit
single observableBL .

A linearized RG matrixRb5](BbL ,CbL)/](BL ,CL) is
calculated, for example, from linear fitting

S BbL~a,b,g!

CbL~a,b,g!
D 5RbS BL~a,b,g!

CL~a,b,g!
D 1S B0

C0
D , ~18!

where Rb and (B0 ,C0) are fitting parameters and we us
values of (BL ,CL) and (BbL ,CbL) at several different pa-
rametersa,b,g near the fixed point. Selection of this param
eter is a delicate problem: when it is too close to the fix
point, (BL ,CL) and (BbL ,CbL) become very close to eac
other and the RG flow is buried in statistical errors, wh
when it is far from the fixed point, nonlinear dependence
(BL ,CL) on (a,b,g) induces a systematic error. Thus th
parameter range for the fitting should be determined ca
fully.

Of courseRb can be calculated froma,b,g derivatives of
BL andCL at the fixed point. However, derivatives with re
spect to irrelevant direction vanish asL becomes large and
buried in statistical errors. Thus values ofBL ,CL at param-
eters well apart from the fixed point along an irrelevant
rection are needed to calculate the second eigenvalue.

A. The second parameter in literature

Here we compare our definition ofCL , ‘‘the second pa-
rameter’’ ~the first one is the Binder’s parameter!, with pre-
ceding works.

Ballesteroset al. @14# used a finite-size correlation lengt
defined below as

j2[
^f~0!2&/^f~k1!f~2k1!&21

sin2~ uk1u!
, ~19!

which is related toCL asj2 sin2(uk1u)52111/CL .
Hasenbusch@15# used the ratio between the partitio

function of a periodic and antiperiodic Hamiltonian. In m
mentum representation, the Hamiltonian for an antiperio
boundary condition~APBC! is obtained by replacingk sum-
mation of the lattice Hamiltonian by km56p/L,
63p/L, . . . for each directionm to which the APBC is
imposed. Let us denote the partition function of a perio
and antiperiodic Hamiltonian byZp andZa , respectively. It
then reads

Za /Zp5

E Df exp~2Ha!

E Df exp~2Hp!

~20!

5

E Df exp~2Hp!exp~Hp2Ha!

E Df exp~2Hp!

5^exp~Hp2Ha!&p , ~21!
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where Hp and Ha denote the periodic and antiperiod
Hamiltonian, respectively,̂•••&p denotes average with re
spect toHp . When the APBC is imposed to a direction ofe1,
it reads

Ha2Hp;(
k

2puk1u
L

f~k!f~2k! ~22!

for largeL. One can see thatZa /Zp has a similar form as tha
of CL . In the real-space RG scheme, bothCL andZa /Zp can
be regarded as an effective coupling between two block s
defined onL3L3•••3L/2 block.

III. PERTURBATION EXPANSION AT DÄ4

Near the Gaussian fixed point, finite-size behavior ofBL
andCL can be predicted from finite-size perturbation theo
proposed by Chen and Dohm@16#. Note that, whenD54,
there is one kind of divergent subdiagram~Fig. 3! whose
factor is proportional to@b1(C01C1 ln L)/g1

2# at the critical
region, whereC0 ,C1.0 are some constants. Thus perturb
tion is restricted to the rangeb1(C01C1ln L)/g1

2!1 and one
cannot setL→`. However, the limit forL rapidly diverges
as we approach the Gaussian fixed point, and good ag
ment between perturbation theory and Monte Carlo dat
expected for a certain parameter range and lattice size. T
one can predict scaling behavior for largeL, which is far
beyond the computational limit of Monte Carlo simulatio
from the perturbation theory.

Here we investigate finite-size behavior ofBL andCL at
the finite-size critical point~to one-loop order!:

a5212
b

g
L2D (

kÞ0

1

2J~k!
, ~23!

whereJ(k)5(m(12coskm).
BL takes the so-called zero-mode value:

BZM[
E dF0 exp~2F0

4!F0
4/E dF0 exp~2F0

4!

S E dF0 exp~2F0
4!F0

2/E dF0 exp~2F0
4! D 2

'2.1844. ~24!

As for CL , to one-loop order,

CL5
Ab

8p2g
A1236

b

g2 (
kÞ0

@2J~k!#22. ~25!

For largeL, (kÞ0@2J(k)#22;A11A2 ln, L whereA1 andA2
are some positive constant. Thus the plot of (BL ,CL) for a
certain range of parameters including critical temperature
proaches (BZM,0) asL increases orb decreases, indicating
that the Gaussian fixed point is infrared stable. Howev
approach to the point (BZM,0) for increasingL is extremely

FIG. 3. Divergent subdiagram inD54.
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slow, and one cannot expect asymptotic Gaussian beha
in MC simulations, even whenL is very large. Critical ex-
ponents estimated from MC results may also differ from
Gaussian~classical! value and depend on the bare para
eters. Thus one can extract only very restricted informat
from MC simulations at the upper critical dimension.

IV. DETAIL OF MONTE CARLO SIMULATION

We investigated theL3L3L system withL58,16,32 for
D53 and theL3L3L3L system withL54,8,16 for D
54, imposing a periodic boundary condition on each dire
tion.

We used the following Hamiltonian:

H5
g

2 (̂
i j &

~si2sj !
21

a

2 (
i

si
21b(

i
si

4 , ~26!

where2`,si,` denotes the spin on the sitei. Since we
cannot use the regularization condition^si

2&51 before the
simulation, we used the following one:

E df expS 2
a

2
f22bf4Df2

E df expS 2
a

2
f22bf4D 51.

We used several fixeda,b and tunedg to reach the critical
region. Actual values of parameters are listed in the la
sections.

For parameters well apart from the Gaussian fixed po
4LD22 single cluster flips@17# and 16 Metropolis sweeps ar
performed between successive observations. In the clu
update stage, length ofsi is kept fixed and only its sign is
changed. In the Metropolis update step, a new value forsi is
chosen uniformly from a range exp(2as22bs4)>exp
(23.0). By the cluster update, all spins are flipped four tim
on average between observations. For all observed qu
ties, the correlation coefficient between successively
served values was less than 0.2.

As we approach the Gaussian fixed point, parameters
have as follows:

FIG. 4. Parameters at which simulations were performed
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a;0, b;const, g→`. ~27!

Thus the nearest neighbor couplinggsisj /2 tends to diverge.
Since the bond-cutting probability of Wolff’s algorithm i
exp(2gsisj), the cluster update tends to end up with flippi
the whole system and does not accelerate the simulation
these cases we increased the number of Metropolis sw
until the above mentioned condition is satisfied.

Thermal averages of observables atg slightly away from
the actually used value were calculated using reweigh
techniques@18#. For all system sizes, at least 0.83105 obser-
vations were done after thermalization, and statistical er
were estimated by the jack-knife procedure. Multiplicati
lagged Fibonacci sequenceRt5Rt296893Rt24187 (mod231)
was used as a random number generator. All runs were
formed on VPP-300 at JAERI.

V. RESULT FOR DÄ3

Simulations were performed at the following paramet
~see also Fig. 4! for L58,16,32:

Ising case:f(x)561, g50.2217;
CaseA: a/2522.6159,b51.0948,g50.3040;
CaseB: a/2521.6655,b50.6935,g50.3545;
CaseC: a/2520.8786, b50.3938,g50.4700;
CaseD: a/2520.5209, b50.2713,g50.6260.
Figure 5 shows the RG flow diagram ofBL andCL near

the Wilson-Fisher RG fixed point. All lines are drawn fro
(BL ,CL) to (B2L ,C2L). Dashed and solid lines correspon
to L58 andL516, respectively. One can see that the R

FIG. 5. RG flow near the Wilson-Fisher fixed point inD53. All
lines are drawn from (BL ,CL) to (B2L ,C2L).
In
ps

g

rs

er-

s

flow shown in Fig. 1 is well reproduced. Moreover, the line
fitting procedure~18! provides an estimate for critical expo
nents asn50.69(3), v50.74(10) fromL58,16 data and
n50.653(10),v50.7(2) from L516,32 data, which is in
agreement with the most recente-expansion resultn
50.6305(25),v50.814(10) @19# and the Monte Carlo re-
sult n50.6296(3), v50.845(10) @15#. Thus one can see
that the two observablesBL andCL are enough to capture th
essential RG flow.

VI. RESULT FOR DÄ4

Simulations were performed at the following paramet
for L54,8, and 16:

Ising case:f(x)561, g150.1495;
CaseA: a/2520.3226,b50.2082,g50.54;
CaseB: a/2520.1383,b50.1530,g51.0.

Near the Gaussian fixed point~CaseB), there is a severe
critical slowing down~owing to large fluctuation of thek
50 mode!, which cannot be removed by the cluster upda
and we did not performL516 simulation. For CaseB, per-
turbation expansion agrees well with the MC result: Fig
6~a! and 6~b! show the plot ofBL and CL , respectively,
againstg1 for fixed (a,b), together with perturbation re
sults. Note that there are no free parameters to be fit
unlike the Ising case@20#, and the agreement is both qua
tative and quantitative.

Figure 7 shows a RG flow diagram ofBL andCL obtained
from MC simulations. All lines are drawn from (BL ,CL) to
(B2L ,C2L). Dashed and solid lines correspond toL54 and
L58, respectively. Simulations at a parameter closer to
Gaussian fixed point than CaseB are very difficult owing to
aforementioned critical slowing down. Instead, finite-si
perturbation provides reliable results near the Gaussian fi
point and it indicates that the plot of (BL ,CL) approaches the
Gaussian fixed point asL increases. Thus one can conclu
that there is no RG fixed point except for the infrared-sta
Gaussian fixed point.

VII. CONCLUSION

The renormalization-group flow diagram obtained by t
method presented in this paper provides qualitative inform
tion such as the stability of a specific RG fixed point agai
some perturbation, as well as quantitative improvement
the estimated value of a critical exponent by eliminati
leading correction-to-scaling terms. However, in lattice mo
FIG. 6. Plot of~a! BL and ~b!
CL againstg1 for the CaseB in
D54. ‘‘MC’’ denotes Monte
Carlo result and ‘‘theory’’ denotes
finite-size perturbation result.
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els, there existsO(1/L) systematic error owing to the subst
tution of integral by finite summation of 1/L mesh, and one
cannot get rid of this as long as the finite lattice system
concerned.

Our method can be easily extended tof4 models with
several or unusual quartic coupling constant~s!:

FIG. 7. RG flow ofBL andCL , obtained by MC simulation in
D54. All lines are drawn from (BL ,CL) to (B2L ,C2L). Dashed
and solid lines correspond toL54 andL58, respectively.
d
,

n

d

on

s

.

s

H5E dx~¹f!21af21(
n

bn(
i jkl

Ci jkl ~n!f if jfkf l ,

~28!

such as the chiralO(2n) model of a triangular antiferromag
net @21#, and the Ginzburg-Landau model of a type-II supe
conductor under a weak or strong magnetic field, with
without point/columnar impurities~see@22,23# for transition
of a pure system under a strong field!. The multiple quartic
term tends to generate an irrelevant operator whose cor
tion exponent is very small, making it difficult to observ
asymptotic behavior in MC simulations. Thus critical beha
ior of these models has been a controversial issue and a
cation of the MCRG method to these models seems v
interesting. A RG flow diagram of regularized quartic term
^Ci jkl (n)f if jfkf l&/^( if i

2&2 will reveal the critical behav-
ior, as in Ref. @24# of the Q54 antiferromagnetic Potts
model.

Another important problem is the estimation of the co
rection exponent for thef6 term at the WF fixed point. Ane
expansion analysis indicates that it becomes positive at
WF fixed point@4#. However, whether the exponent is larg
or smaller thanv'0.8 off4 theory, which we assumed as
leading correction, should be confirmed numerically. Sim
larly, the effect of sixfold anisotropy on the critical behavi
of a three-dimensionalXY model is another interesting sub
ject since the anisotropy is expressed by theO(f6) term.
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76, 3662~1996!; H.W.J. Blöte and E. Luijten, Europhys. Lett
38, 565 ~1997!; E. Luijten, ibid. 37, 489 ~1997!.
,

,

.

@12# K.K. Mon, Europhys. Lett.34, 399 ~1996!; , ibid. 37, 493
~1997!.

@13# G. Parisi and J.J. Ruiz-Lorenzo, Phys. Rev. B54, R3698
~1996!; 55, 6082~1997!.

@14# H.G. Ballesteros, L.A. Fernandez, V. Martin-Mayor, and
Munoz-Sudupe, Phys. Lett. B441, 330 ~1998!.

@15# M. Hasenbusch, J. Phys. A32, 4851~1999!.
@16# X.S. Chen and V. Dohm, Int. J. Mod. Phys. C9, 1073~1998!.
@17# U. Wolff, Phys. Rev. Lett.62, 361 ~1989!.
@18# A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett.61,

2635 ~1988!.
@19# R. Guida and J. Zinn-Justin, J. Phys. A31, 8103~1998!.
@20# E. Luijten, K. Binder, and H.W.J. Blo¨te, Eur. Phys. J. B9, 289

~1999!.
@21# H. Kawamura, J. Phys.: Condens. Matter10, 4707~1998!.
@22# E. Brezin, D.R. Nelson, and A. Thiaville, Phys. Rev. B31,

7124 ~1985!.
@23# X. Hu, S. Miyashita, and M. Tachiki, Phys. Rev. Lett.79, 3498

~1997!.
@24# M. Itakura, Phys. Rev. B60, 6558~1999!.


