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Monte Carlo renormalization-group analysis of the lattice ¢* model in D=3,4
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We present a simple, sophisticated method to capture renormalization-group flow in Monte Carlo simula-
tion, which provides important information of critical phenomena. We applied the method Bo-t324 lattice
¢* model and obtained a renormalization flow diagram that well reproduces theoretically predicted behavior of
the continuum¢g* model. We also show that the method can be easily applied to much more complicated
models, such as frustrated spin models.

PACS numbegps): 02.70.Lq, 75.10.Hk

[. INTRODUCTION the majority rule is one of the options. However, it cannot be
extended to more complicated models. There are infinite
Renormalization-grouRG) theory[1—4] has drastically  kinds of definitions and location of the fixed poifiong an
improved our perspective about phase transition. When it igrelevant directioh depends on i6].
combined with Monte CarléMC) simulations, it becomes a In this paper, we use one that seems most simple and
very powerful tool to investigate critical phenomena. How- suitable for Monte Carlo simulation,
ever, the so-called Monte Carlo renormalization group
(MCR.G) method [5—9]' requires an elaborate. scheme _and SbESb/\/@, )
experience, and application has been restricted to simple
models such as the Ising ferromagnet up to now. In this
paper we reformulate the MCRG method and present
simple way to obtain the RG flow diagram in a MC simula-
tion, which can provide essential information about critical
phenomena. This paper is organized as follows. In Sec. |
problems in the conventional MCRG scheme are explaine
and remedies for each problem are presented. In fact, mod ) .
fication of the conventional scheme leads to use of Binder's Another problem is that the block sizeshould be much

parametef10] and the second parameter, which is used irsmaller thanL, otherwise the behavior of the block spin is
recent high-precision numerical analy$es ’14]_ In Sec. Il affected by a boundary condition that is nonuniversal. Thus

expected behavior of RG flow in tH2=4 lattice ¢* model one faces a tradeoff that for larglerbehavior of block spins
is presented for comparison with the MC result. Some Caupecome more asymptot(a:ou'pllngs .Of irrelevant terms be-
tion on MC simulation just at the upper critical dimension is come smallerbut their behavior deviates from bulk one. The

also presented. In Sec. IV, details of the MC simulation ofSCIUtion is to use the following matrix:

the lattice¢p* model are described. In Secs. V and VI, results
of the MC simulation forD =3,4 are presented. In Sec. VII, ~ 7Ki(bL,bL) dK;(bL,bL) JKi(bL,b) [IK;(L,L)
we summarize the result and discuss possible applications of dK;(L,L) dK;(bL,b) dK;(bL,1) [aKj(L,l)]*l'

heres, denotes summation of all spins in the block. This
efinition is implicitly used in the definition of Binder's pa-
rameter. Actually, we use coarse-grained spin obtained by
Icutting high-momentum modes off, as in REd]. However,

&ve setb=L at the last stage, therefore real-space RG and
fnomentum-space RG do not make much difference.

the method to more complicated models. ©)
II. MODIFICATION OF THE CONVENTIONAL MCRG instead of(1). At the critical point,
METHOD
In the conventional MCRG schenj&—8], critical expo- JKi(bL,bL) _JKi(L,L) @
nents are calculated from eigenvalues of the linearized RG JK;(bL,b)  dK;(L,1)
transformation:
should be satisfied and eigenvalues of the ma&8)xcoincide
IKi(L,b,) 1) with that of (1). Thus one can use as large a block size as the
JK;(L,by)’ system size.

Yet another, and most severe problem, is referred to as the
whereK;(L,b) denotes coupling strength of thida term of a  “redundancy problem”[7,8]. In the conventional MCRG
block-spin Hamiltonian with block sizb, andL denotes the scheme, one should observe very large numbers of block-
original size of the system. spin interaction terms to construct a fixed-point Hamiltonian.

One problem is that one should use the proper definitioHowever, in the continuump® theory, there are only two
of block spin, otherwis&;(L,b) goes to zero or infinity as  kinds of independent coupling constarimass and cou-
becomes large even at the critical point. For the Ising modelpling). The lattice Hamiltonian approaches this continuum
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asymptotically after the momentum-space RG transformabeneath the resolutidrof the observation device are already
tion, and the two terms are enough to observe essential Rltegrated out and absorbed into the paramegetis 3. Thus

flow. parameters depend on the cutoff lengtind should be de-
Let us consider the Hamiltonian defined on noted byy,,a,,8 . We also denote the physical quantity
D-dimensional continuum space: ¢(X) averaged over a volume of linear lendthy ¢,(x).

We replace the parameters (B) by “regularized” ones
%[V¢(X)]2+§¢(X)2+B¢)(X)4 ] (5) defined as follows:

HZde

- _|D 2 D 2\2
Note that it is not a microscopic Hamiltonian: it is a phenom- =12 (X)) a;,  Bi=17((X))Bi,
enological Hamiltonian and the parametetsy, 8 should be _
determined to reproduce experimental results. In other n=1""2 1 (x)?) .

words, it is the logarithm of probability of observing a spe-
cific configuration of some physical quantigy(x) in the In terms of this regularization, the Hamiltonian is expressed
experiment. This means that short length scale fluctuationgs

atypi—  — _ _
legwdp 5 ¢(Po(—p)+B lp_lqdpldpzdpsdmé(ﬁi Pi)¢(p1)¢(P2)¢(p3)¢(p4)a (6)
|
where ¢(p)=¢(pl)($?) Y2 All possible values of the (L,b) Loy
regularized parameter fall on a two-dimensional manifold on H(L,b)=— (L/b)fDlpéﬂ Sp(P)Sp(—p)  (8)

which {¢,(x)2)=1 is satisfied. This regularization is suitable
for MC simulations, compared to the field theoretical one,

y=1. Figure 1 and Fig. 2 show schematic RG flow of these y(L,b) 7D(L/b) — —
regularized parameters iB=3 and 4, respectively: high +——5—(L/b) ‘%w P“sp(P)Sp(—P)
temperature, low temperature, Gaussian, and Wilson-Fisher (9)

fixed point are denoted b, L, G, and WF, respectively.

Now let us return to the lattice model defined as follows: Ub)

+B(L,b)(L/b) %P ;
y a, 4 Ipil<m -
HL:E <2> (Si_Sj)z‘f'z Esi +188i , (7) Pyt p2+p3tps=0
1] | - - o o
X Sp(P1)Sp(P2)SH(P3)SH(Pa), (10)

where the summatio ;;, sums over all nearest neighbor .
pairs. If we apply the momentum-space RG transform ofwhere sy(p)=s(bp)(sj(x)) 2 and the symboI={" de-

factor b to (7), the renormalized Hamiltonian takes the fol- notes summation over 82#/N,*=4=/N, ..., for each
lowing form: component op, s(p) denotes Fourier componentsf and
B=w B=w
Ising limit) Ising limit)
\“ P — ‘-“‘ " _
<—”——\———‘ : _[3: - . \ H _[3:
L ‘/:_ " '\ 7=0 L ) ¥=0
— -
! Tew e Tew
ol=- o a:O &:m o=- &=0 (_X,=0:)
FIG. 1. Renormalization flow of regularized parameterDn FIG. 2. Renormalization flow of regularized parameterOn

=3. =4.
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. _ dimensional(5D) Ising model[11-13, this RG flow dia-
Sp(x)=(L/b) ‘ ‘;/b e'P*s(p) (1) gram is very useful compared to a many parameter fit to
pI= single observabl®, .

is coarse-grained spin at Actually, higher terms such as A linearized RG matrixR,=d(By,Cp)/d(BL,Cy) is
O(s,%) are present iH(L,b) but they vanish a& and b calculated, for example, from linear fitting
become large. B ) B ) B

Note that (2,s,(p)s,(—p))=const by definition and ( oule By ):Rb( @By )+( 0), (18)
there are only two kinds of interesting terms. If we &et Copu(a,8,7) Ci(a,B,y) Co
=L, the term(10) is exactly the Binder's parameter and we
denote it byB, . The term(9) vanishes if we séb=L, sowe whereR, and B,C,) are fitting parameters and we use

must stop RG transform &t=L/2. Then it becomes values of B_,C) and By,_,Cpy.) at several different pa-
rametersy, 8,y near the fixed point. Selection of this param-
2772(s(k1)s(—k1)> (12 eter is a delicate problem: when it is too close to the fixed

point, B, ,C,) and By._,Cp.) become very close to each

-D 2 _ ’
27 7(s(0)"+2s(ky)s(—ky)) other and the RG flow is buried in statistical errors, while

wherek,=(2/L,0, ... ,0). Forsimplicity, we use the fol- When it is far from the fixed point, nonlinear dependence of
lowing quantity: (B_,C.) on («,B,v) induces a systematic error. Thus the
parameter range for the fitting should be determined care-
(s(kp)s(—ky)) fully.
C.= W (13 Of courseR,, can be calculated froma, 3,y derivatives of

B, andC, at the fixed point. However, derivatives with re-

Recently, several different parameters have been proposed 8Rect to irrelevant direction vanish asbecomes large and

the second paramet@, to estimate and eliminate the sub- buried in statistical errors. Thus values®f,C, at param-

leading scaling field. We will review these works in Sec. eters well apart from the fixed point along an irrelevant di-

IA. rection are needed to calculate the second eigenvalue.
Now consider the following matrix:

1 A. The second parameter in literature

9(Bpi,Cou) =&(BEEDL) a(li- ’E'-) (14) Here we compare our definition &, , “the second pa-
IBL.CO  a(Br.y) | d(Brv) rameter” (the first one is the Binder's parametewith pre-
o ceding works.
_ 9(BpL.CpL) 9By, vb) . fI_Balléasgelroat al.[14] used a finite-size correlation length
=== = = efined below as
&(Bb!yb) 07(:81")’1)
1 2 _ _
4(B,.CL) o (HODNDD kD) ~1 19
%G (15 sire([kal)
A B1,v1)
instead of which is related taC, as &2 sirf(|k,|)=—1+1/C, .
. o Hasenbusch15] used the ratio between the partition
J B(bL,bL),y(bL,bL/2)] function of a periodic and antiperiodic Hamiltonian. In mo-

(16) mentum representation, the Hamiltonian for an antiperiodic

ILB(LL) ¥(L,LI2)] boundary conditiofAPBC) is obtained by replacing sum-

At the fixed point, mation of the lattice Hamiltonian byk,==*mx/L,
+37/L, ... for each directionu to which the APBC is
d(BL,C) _d(Bp,Cpu) imposed. Let us denote the partition function of a periodic
—— = (170 and antiperiodic Hamiltonian b¥, andZ,, respectively. It
d(B1,v1)  d(Bb.yp) then reads
is satisfied and eigenvalues &fBy, ,Cy)/d(B, ,C,) coin-
cide with that of d(By,vp)/d(B1,y1) as long as f Do exp—Hyp)
d(B.,C.)/d(B1,v1) is a nonsingular matrix. Z,1Z,= (20
Thus scaling behavior of renormalized parameters can be f D¢ exp(—H,)
extracted from that of K, ,C)), as long as

|0(B.,CL)/3(B1,71)|#0: If we draw arrows fromB, ,C,)

to (B, ,Cp) in the B, -C, plane, the renormalization flow J B B
diagram of factoib is obtained. From this diagram, one can B D¢ exp(—Hp)expHp—Ha)
determine whether the MC result is asymptotic enough or -

not, by checking whethei® ,C,) converge to a fixed point. f D¢ exp(—Hp)

When a subleading scaling field is expected to be very large,
such as in the recent Monte Carlo studies of a five- =(exp(Hp—Ha)>p, (21
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O 25 T T . . .
2t \ Ising limit .
FIG. 3. Divergent subdiagram in=4.
where H, and H, denote the periodic and antiperiodic 157 1
Hamiltonian, respectively- - -), denotes average with re- <
spect toH,. When the APBC is imposed to a directioneyf 1t +case A ]
it reads
+case B
2Ky 05} . |
Ha=Hp~> = ¢(k)d(—K) (22 P Case D
0 . . . . + Gaussian
for largeL. One can see that, /Z, has a similar form as that -5 -4 -3 -2 -1 0 1
of C_ . In the real-space RG scheme, b@handZ,/Z, can —o/2

be regarded as an effective coupling between two block spins

defined onL XL X - - - X L/2 block. FIG. 4. Parameters at which simulations were performed.

slow, and one cannot expect asymptotic Gaussian behavior
in MC simulations, even wheh is very large. Critical ex-
Near the Gaussian fixed point, finite-size behavioBpf ponents estimated from MC results may also differ from the
andC, can be predicted from finite-size perturbation theoryGaussian(classical value and depend on the bare param-
proposed by Chen and Dohfi6]. Note that, wherD=4,  eters. Thus one can extract only very restricted information
there is one kind of divergent subdiagraifig. 3 whose from MC simulations at the upper critical dimension.
factor is proportional t¢ 8,(Cy+C; In L)/yi] at the critical
region, whereC,,C;>0 are some constants. Thus perturba-
tion is restricted to the rangg;(Cy+ C4In L)/y%l and one

cannot seL . However, the limit forL rapidly diverges .
- pIcty g p=3 and theL XLXLXL system withL=4,8,16 forD

as we approach the Gaussian fixed point, and good agree- . : iodic bound diti h di
ment between perturbation theory and Monte Carlo data is_4' Imposing a periodic boundary condition on each direc-

expected for a certain parameter range and lattice size. Th fpn- . I
one can predict scaling behavior for larie which is far We used the following Hamiltonian:
beyond the computational limit of Monte Carlo simulation,
from the perturbation theory.

Here we investigate finite-size behavior Bf andC, at
the finite-size critical poinfto one-loop order

Ill. PERTURBATION EXPANSION AT D=4

IV. DETAIL OF MONTE CARLO SIMULATION
We investigated thé X L X L system withL =8,16,32 for

H=2S (s-5)%+> > 2+ s, (26
21 29 i

where —o<g;<o denotes the spin on the siteSince we
23) cannot use the regularization conditi¢sf)=1 before the
simulation, we used the following one:

a=—12§LDE L

kzo 2J(k)’

whereJ(k) =2 ,(1—cosk,). a A
B, takes the so-called zero-mode value: j dé ex;{ —59° B9 >¢
o =1.
f d¢ exp{ - §¢2—ﬁ¢4)

We used several fixed, 8 and tunedy to reach the critical
region. Actual values of parameters are listed in the later
sections.

For parameters well apart from the Gaussian fixed point,
4L.P~2 single cluster flip§17] and 16 Metropolis sweeps are
performed between successive observations. In the cluster-

f dd,exp(— cDé)d)é/J dd, exp — dj)

BZME 2
(fd(boexr(—d)g)d)g/f d@oexp(—rbg))

~2.1844. (24)

As for C_, to one-loop order,

_ B

_8772y

C. 1—36@2 [23(k)]72 (25)
Y k#0

For largeL, =,.o[2J(k)] 2~A;+ A, In, L whereA; andA,
are some positive constant. Thus the plot Bf (C,) for a

update stage, length & is kept fixed and only its sign is
changed. In the Metropolis update step, a new values;fe
chosen uniformly from a range exp@s’—pBs’)=exp
(—3.0). By the cluster update, all spins are flipped four times
on average between observations. For all observed quanti-

certain range of parameters including critical temperature apties, the correlation coefficient between successively ob-
proaches B;y,0) asL increases o3 decreases, indicating served values was less than 0.2.

that the Gaussian fixed point is infrared stable. However,
approach to the pointgy,,0) for increasing. is extremely

As we approach the Gaussian fixed point, parameters be-
have as follows:
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0.08 ———— flow shown in Fig. 1 is well reproduced. Moreover, the linear
0.075 | | fitting procedurg(18) provides an estimate for critical expo-
\ nents asy=0.693), »=0.74(10) fromL=8,16 data and
007 1 Ising limit T v=0.653(10) w=0.7(2) fromL=16,32 data, which is in
0.065 | i agreement with the most recert-expansion resulty
=0.6305(25),w=0.814(10)[19] and the Monte Carlo re-
S 0.06 1 sult »=0.62963), w=0.845(10)[15]. Thus one can see
0.055 | _ that the_: two observabldy andC, are enough to capture the
essential RG flow.
0.05 r J
O:zj ssmEriTE VI. RESULT FOR D=4
14 145 15 155 1.6 165 1.7 1.75 1.8 1.85 1.9 Simulations were performed at the following parameters
By for L=4,8, and 16:
) ) ] ) Ising caseip(x)==*1, y;=0.1495;
_ FIG. 5. RG flow near the Wilson-Fisher fixed pointin=3. All CaseA: a/2=—0.3226,3=0.2082, y=0.54;
lines are drawn from, ,C,) to (B, ,Cz.)- CaseB: a/2=—0.1383,3=0.1530, y=1.0.
Near the Gaussian fixed poif€aseB), there is a severe,
a~0, p~const, y—o=. (27 critical slowing down(owing to large fluctuation of thé

) . ) =0 mode, which cannot be removed by the cluster update,
Thus the nearest neighbor coupling;s;/2 tends to diverge. and we did not perforn =16 simulation. For CasB, per-
Since the bond-cutting probability of Wolff's algorithm is tyrhation expansion agrees well with the MC result: Figs.
exp(-1ss), the cluster update tends to end up with flipping g(g) and &b) show the plot ofB, and C,, respectively,
the whole system and does not accelerate the simulation. lgyainsty, for fixed (@), together with perturbation re-
these cases we increased the number of Metropolis sweeggits. Note that there are no free parameters to be fitted,
until the above mentioned condition is satisfied. unlike the Ising cas¢20], and the agreement is both quali-

Thermal averages of observablesyaslightly away from  tative and quantitative.

the actually used value were calculated using reweighting Figyre 7 shows a RG flow diagram Bf andC, obtained
vations were done after thermalization, and statistical errorgg, | c,, ). Dashed and solid lines correspondLte 4 and
were estimated by the jack-knife procedure. MuItipIiciativeL:& respectively. Simulations at a parameter closer to the
lagged Fibonacci sequend&=R;_gegoX Ri—4187 (M0dZ")  Gaussian fixed point than CaBeare very difficult owing to
was used as a random number generator. All runs were pegforementioned critical slowing down. Instead, finite-size

formed on VPP-300 at JAERI. perturbation provides reliable results near the Gaussian fixed
point and it indicates that the plot oB( ,C,) approaches the
V. RESULT FOR D=3 Gaussian fixed point as increases. Thus one can conclude

. . . that there is no RG fixed point except for the infrared-stable
Simulations were performed at the following parametersg,;ssian fixed point.

(see also Fig. #for L=28,16,32:
Ising casep(x)==*1, y=0.2217,
CaseA: a/2=—2.6159,3=1.0948, y=0.3040;
CaseB: a/2=—1.6655,8=0.6935, y=0.3545;
CaseC: a/2=-0.8786, B=0.3938,y=0.4700; The renormalization-group flow diagram obtained by the
CaseD: a/2=—-0.5209, B=0.2713,y=0.6260. method presented in this paper provides qualitative informa-
Figure 5 shows the RG flow diagram Bf andC near tion such as the stability of a specific RG fixed point against
the Wilson-Fisher RG fixed point. All lines are drawn from some perturbation, as well as quantitative improvement of
(B.,C\) to (B, ,C, ). Dashed and solid lines correspond the estimated value of a critical exponent by eliminating
to L=8 andL =16, respectively. One can see that the RGleading correction-to-scaling terms. However, in lattice mod-

VII. CONCLUSION

2.4 = T T T y 0.045 T T T T T
s MC L=4 —— MC L=4 ——
e MC L=8 +---%--i MC =8 ——x—t
23 theory L=4 - ooa |l ™ theory L=4 - |
- theory L=8 ——— - ™, theary L=8 -
Sl I ¥ ] 0035 [ - A
g E - Rl IS 1 FIG. 6. Plot of(a) B, and (b)
& 21 3 R, o oosl NS | C, againsty, for the CaseB in
2f g 1 el T D=4. *MC” denotes Monte
ol ) 0025 | SN T Carlo result and “theory” denotes
. oo S finite-size perturbation result.
18 -
17 - - - - 0015 - - - - =
0.94 0.96 0.98 1 1.02 1.04 1.06 0.94 0.96 098 1 1.02 1.04 1.06

(a) % (b) n
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0.12
H:f dX(V¢)Z+a¢2+; Bni% Ciji(n) i dj b,
o1y (28)
0.08 - such as the chirdD(2n) model of a triangular antiferromag-
net[21], and the Ginzburg-Landau model of a type-Il super-
S 006 L conductor under a weak or strong magnetic field, with or
without point/columnar impuritiessee[ 22,23 for transition
of a pure system under a strong fieldhe multiple quartic
0.04 r term tends to generate an irrelevant operator whose correc-
P P tion exponent is very small, making it difficult to observe
0.02 - 1 asymptotic behavior in MC simulations. Thus critical behav-
Gaussian fixed point\ ior of these models has been a controversial issue and appli-
0 L L ' L . cation of the MCRG method to these models seems very
5 16 17 18 19 2 21 22 23 24 interesting. A RG flow diagram of regularized quartic terms
Be (Ciji (n) i b b (Zi 67)? will reveal the critical behav-

FIG. 7. RG flow ofB, andC, , obtained by MC simulation in 10T, as in Ref.[24] of the Q=4 antiferromagnetic Potts

D=4. All lines are drawn from B, ,C,) to (B, ,C, ). Dashed model. _ , o
and solid lines correspond to=4 andL =8, respectively. Another important problem is the estimation of the cor-

rection exponent for the)® term at the WF fixed point. A

expansion analysis indicates that it becomes positive at the
els, there exist®(1/L) systematic error owing to the substi- WF fixed point[4]. However, whether the exponent is larger
tution of integral by finite summation of [l/mesh, and one or smaller thanw~0.8 of ¢* theory, which we assumed as a
cannot get rid of this as long as the finite lattice system ideading correction, should be confirmed numerically. Simi-

concerned. larly, the effect of sixfold anisotropy on the critical behavior
Our method can be easily extended @@ models with  of a three-dimensionaXY model is another interesting sub-
several or unusual quartic coupling constant ject since the anisotropy is expressed by @g°) term.
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